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Abstract. For the problem of maximizing a convex quadratic function under convex quadratic
constraints, we derive conditions characterizing a globally optimal solution. The method consists
in exploiting the global optimality conditions, expressed in terms of ε-subdifferentials of convex
functions and ε-normal directions, to convex sets. By specializing the problem of maximizing a
convex function over a convex set, we find explicit conditions for optimality.
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1. Introduction

Optimization problems, where all the data (objective function and constraint func-
tions) are quadratic functions, cover a large spectrum of situations; they constitute
an important part in the field of optimization, see [1, section 8] for a recent survey
on the subject. Tackling them from the (global) optimality and duality viewpoints is
not as yet at hand. We consider here a special class of such optimization problems,
with a convex objective function and convex inequality constraints:

(P)




Minimize (or maximize) f (x) := 1
2〈Ax, x〉 + 〈a, x〉 + α

subject to
gi(x) := 1

2〈Qix, x〉 + 〈bi, x〉 + ci � 0 for all i = 1, . . . , m,

where A, Q1, . . . ,Qm are positive semidefinite symmetric n-by-n matrices, a,
b1, . . . , bm vectors in R

n and α, c1, . . . , cm real numbers. The notation 〈., .〉 stands
for the standard inner product in R

n.
In such a setting, two situations are well understood: when there is only one

inequality constraint, or when the f to be minimized as well as the constraint
functions gi are convex (hence (P) is a convex minimization problem). When
there is only one inequality constraint, surprisingly enough, the usual first-order
Karush–Kuhn–Tucker (KKT) conditions can be complemented so as to provide a
characterization of global solutions to (P) ([6,8]): under a slight assumption on the

� A preliminary version of this paper was presented at the French–Belgian–German Conference
on Optimization, September 1998
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constraint function g1, the KKT conditions at x̄ with an associated Lagrange–KKT
multiplier µ̄ � 0, complemented with the condition ‘A + µ̄Q1 is positive semi-
definite’, characterize a global solution to (P). In such a case one can assert that,
roughly speaking, (P) is a convex problem in a hidden form. When all the matrices
A, Q1, . . . ,Qm are positive semidefinite and (P) consists in minimizing the quad-
ratic convex f under quadratic convex inequalities gi(x) � 0, i = 1, . . . , m, (P)
is a particular convex minimization problem for which one knows the optimality
conditions.

In the present work, we intend to derive conditions characterizing globally op-
timal solutions in the problem of maximizing the convex objective f under several
convex inequality constraints. This can be viewed as a particular case of the general
situation considered by the author in ([2], [3, section III]) where a convex function
was maximized over a convex set. The conditions expressed there were given in
terms of the ε-subdifferential of the objective function and the ε-normal directions
to the constraint set. The nice thing in the ‘quadratic world’ is that these global
optimality conditions can be exploited in the calculations.

We do not address here the questions of semidefinite relaxation, complexity, or
obtaining good approximations of (P).

2. A global optimality condition

Let f : R
n → R be convex and let C be a (nonempty) closed convex set in R

n.
Two mathematical objects are useful in deriving global optimality conditions in the
problem of maximizing f over C: the so-called ε-subdifferential of f and the set
of ε-normal directions to C. For ε � 0, the ε-subdifferential of f at x̄, denoted as
∂εf (x̄), is the set of (slopes) s ∈ R

n satisfying

f (x) � f (x̄)+ 〈s, x − x̄〉 − ε for all x ∈ R
n. (1)

The set of ε-normal directions to C at x̄ ∈ C, denoted as Nε(C, c̄), is the set of
(directions) d ∈ R

n satisfying

〈d, x − x̄〉 � ε for all x ∈ C. (2)

For properties of ε-subdifferentials of convex functions and ε-normal directions to
convex sets, we refer to [5, chapter XI].

The following general result characterizes a global maximizer x̄ ∈ C of f over
C.

THEOREM 1. ([2])
x̄ ∈ C is a global maximizer of f over C if and only if

∂εf (x̄) ⊂ Nε(C, x̄) for all ε > 0. (3)

Inclusion (3) has to be checked for all ε > 0, a priori. Instead of using the rough
definitions (1), (2), an alternate way of exploiting Theorem 1 is to go through the



MAXIMIZING A CONVEX QUADRATIC FUNCTION 447

support functions of ∂εf (x̄) andNε(C, x̄). The support function of ∂εf (x̄), denoted
as f ′

ε(x̄, .), is the so-called ε-directional derivative of f at x̄:

d ∈ R
n �→ f ′

ε(x̄, d) = inf
t>0

f (x̄ + td)− f (x̄)+ ε

t
. (4)

Also the support function of Nε(C, x̄), denoted as (IC)′ε(x̄, .), is the ε-directional
derivative of the indicator function IC at x̄:

d ∈ R
n �→ (IC)

′
ε(x̄, d) = inf

{ε
t

: t > 0, x̄ + td ∈ C
}
. (5)

So, instead of writing the inclusions (3) between sets, we write the following
inequalities between support functions:

f ′
ε(x̄, d) � (IC)

′
ε(x̄, d) for all d ∈ R

d and all ε > 0. (6)

The trick now is to exchange the quantifiers: ‘for all d ∈ R
n’ and ‘for all ε > 0’.

The strategy is to exploit thoroughly the condition

f ′
ε(x̄, d) � (IC)

′
ε(x̄, d) for all ε > 0.

in given situations, and then let d vary in R
n.

We begin by showing how this works in the presence of just one inequality
constraint.

2.1. A GLOBAL OPTIMALITY CONDITION IN THE PRESENCE OF ONE

INEQUALITY CONSTRAINT

Here is our optimization problem:

(P)
{

maximize f (x) := 1
2〈Ax, x〉 + 〈a, x〉 + α

subject to x ∈ C := {x ∈ R
n : g(x) � 0},

where g(x) := 1
2 〈Qx, x〉 + 〈b, x〉 + c.

We make the following assumptions on the data:
• A �= 0 is positive semidefinite;
• Q is positive semidefinite;
• There exists x0 such that g(x0) < 0 (Slater’s condition).

Under such assumptions:
• The boundary of C is {x : g(x) = 0}, while its interior is {x : g(x) < 0};
• A maximizer of f on C, even a local one, lies on the boundary of C.

Calculation of f ′
ε(x̄, d). Due to the particular form of f , the calculation of f ′

ε(x̄, d)

is fairly easy ([5, chapter XI]):

f ′
ε(x̄, d) = 〈Ax̄ + a, d〉 + √

2ε〈Ad, d〉 for all d ∈ R
n and all ε > 0.
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Calculation of (IC)′ε(x̄, d) at a boundary point x̄ of C. Let x̄ satisfy g(x̄) = 0. We
wish to calculate inf{ ε

t
: t > 0, x̄ + td ∈ C}, which amounts to determining

sup{t > 0 : g(x̄ + td) � 0} = sup

{
t > 0 : 1

2
t2〈Qd, d〉 + t〈Qx̄ + b, d〉 � 0

}
=: t̄d .

We know that ∇g(x̄) = Qx̄ + b �= 0; so three cases arise:
• 〈Qx̄ + b, d〉 > 0: there is no t > 0 for which

1

2
t2〈Qd, d〉 + t〈Qx̄ + b, d〉 � 0

whence t̄d = +∞.
• 〈Qx̄ + b, d〉 = 0: the set of t > 0 for which

1

2
t2〈Qd, d〉 + t〈Qx̄ + b, d〉 � 0

is either empty or the whole half-line (0,+∞) (depending on whether 〈Qd,
d〉> 0 or equals 0); whence t̄d = +∞ again.

• 〈Qx̄+b, d〉 < 0: then t̄d is +∞ if 〈Qd, d〉 = 0 and −2 〈Qx̄+b,d〉
〈Qd,d〉 if 〈Qd, d〉 > 0;

whence t̄d = −2 〈Qx̄+b,d〉
〈Qd,d〉 in the two cases.

Therefore the necessary and sufficient condition for global optimality (6) is rewrit-
ten as:{

〈Ax̄ + a, d〉 + √
2ε〈Ad, d〉 + ε

2
〈Qd,d〉

〈Qx̄+b,d〉 � 0

for all d satisfying 〈Qx̄ + b, d〉 < 0 and all ε > 0.
(7)

The main question remains: how to get rid of the ε > 0? For a given d satisfying
〈Qx̄ + b, d〉 < 0 letting α = √

ε, the inequality in (7) becomes:

θ(α) : 1

2

〈Qd, d〉
〈Qx̄ + b, d〉α

2 + √
2〈Ad, d〉α + 〈Ax̄ + a, d〉 � 0 for all α > 0.

(8)

θ(α) is a polynomial function of degree 2, with θ ′(0) = √
2〈Ad, d〉 � 0. Hence

the condition (8) is equivalent to θ(α) � 0 for all α ∈ R, which in turn is checked
as:

�(d) := 〈Ax̄ + a, d〉〈Qd, d〉 − 〈Qx̄ + b, d〉〈Ad, d〉 � 0. (9)

Consequently, the condition (7) no longer contains ε > 0:

�(d) � 0 for all d satisfying 〈Qx̄ + b, d〉 < 0. (10)

But �(−d) = −�(d) for all d, so that condition (10) can be read again in the form
below.
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THEOREM 2. Under the hypotheses posed at the beginning of the subsection, x̄
is a global maximizer in (P1) if and only if:{

〈Ad, d〉 − 〈Qd, d〉 〈Ax̄+a,d〉
〈Qx̄+b,d〉 � 0

for all d satisfying 〈Qx̄ + b, d〉 �= 0.
(11)

There is no Lagrange-KKT multiplier showing up in (11); actually the first-order
necessary condition for maximality is contained in (11) in a hidden form. Recall
that the tangent cone T (C, x̄) to C at x̄ is the half-space described as:

T (C, x̄) = {d ∈ R
n : 〈Qx̄ + b, d〉 � 0},

and that the first-order necessary condition for maximality reads as follows:

〈∇f (x̄), d〉 = 〈Ax̄ + a, d〉 � 0 for all d ∈ T (C, x̄). (12)

Reformulated with the help of a multiplier, (12) is equivalent to: there exists µ̄ � 0
such that Ax̄ + a = µ̄(Qx̄ + b). We now can see how our condition (11) takes the
(equivalent) form of the necessary and suffficient condition for global optimality
as given by Moré [6] (see also Stern and Wolkowicz [8]).

THEOREM 3. Under the hypotheses posed at the beginning of the subsection, x̄
is a global maximizer in (P1) if and only if there exists µ̄ � 0 satisfying:{

Ax̄ + a = µ̄(Qx̄ + b);
−A+ µ̄Q is positive semidefinite.

(13)

REMARKS 1.
• Condition (10) can easily be extended by continuity to all directions d satisfy-

ing 〈Qx̄ + b, d〉 � 0. Thus, while (12) is just a necessary condition for local
maximality of x̄, the following mixture of first- and second-order information
on the data f and g at x̄ provides a necessary and sufficient condition for
global maximality of x̄:{

〈Ad, d〉〈Qx̄ + b, d〉 − 〈Qd, d〉〈Ax̄ + a, d〉 � 0

for all d ∈ T (C, x̄).
(14)

• The global optimality condition in Theorem 3 still holds in the following more
general situation ([6, p.199]) : Q �= 0 and −∞ � infRn g(x) < 0.

2.2. GLOBAL OPTIMALITY WITH TWO INEQUALITY CONSTRAINTS

We now admit two convex quadratic inequalities:

(P2)

{
maximize f (x) := 1

2 〈Ax, x〉 + 〈a, x〉 + α

subject to x ∈ C := {x ∈ R
n : g1(x) � 0 and g2(x) � 0},

where gi(x) := 1
2 〈Qix, x〉 + 〈bi, x〉 + ci for i = 1, 2.
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The two convex quadratic inequality constraints problem is often referred to as
the CDT problem (see [7] and references therein). Such specific problems appear
in designing trust region algorithms for constrained optimization.

We make the following assumptions on the data:
• A �= 0 is positive semidefinite;
• Q1 and Q2 are positive definite (formulas are then a little simpler to derive

than when Q1 and Q2 are just positive semidefinite);
• There exists x0 such that gi(x0) < 0 and g2(x0) < 0 (Slater’s condition).

Under such assumptions:
• The boundary of C is {x ∈ C : g1(x) = 0 or g2(x) = 0};
• A maximizer of f on C necessarily on the boundary of C.

The calculation of f ′
ε(x̄, d) is the same as in the previous subsection. As for (IC)′ε

(x̄, d), its calculation is more tricky, we have to distinguish two cases: when both
constraints are active at x̄, or only one constraint is active at x̄.

2.2.1. Case where gi(x̄) = g2(x̄) = 0

To calculate (IC)′ε(x̄, d) for d �= 0 we have to determine

sup{t > 0 : gi(x̄ + td) � 0 for i = 1, 2}
= sup

{
t > 0 : 1

2
t2〈Qid, d〉 + t〈Qix̄ + bi, d〉 � 0 for i = 1, 2

}
=: td .

By exploring the various cases depending on whether or not

〈∇gi(x̄), d〉 = 〈Qix̄ + bi, d〉 < 0,

we easily obtain the following:

td = +∞ if either 〈Q1x̄ + b1, d〉 � 0 or 〈Q2x̄ + b2, d〉 � 0;
td = min

{
−2

〈Q1x̄ + b1, d〉
〈Q1d, d〉 ,−2

〈Q2x̄ + b2, d〉
〈Q2d, d〉

}
if both

〈Q1x̄ + b1, d〉 and 〈Q2x̄ + b2, d〉 are < 0.

Consequently the necessary and sufficient condition for global optimality (6) be-
comes:{

〈Ax̄ + a, d〉 + √
2ε〈Ad, d〉 + ε

2 min
{

〈Q1d,d〉
〈Q1x̄+b1,d〉,

〈Q2d,d〉
〈Q2x̄+b2,d〉

}
� 0

for all d satisfying 〈Q1x̄ + b1, d〉 < 0 and 〈Q2x̄ + b2, d〉 < 0 and all ε > 0.
(15)

In the present case the tangent cone T (C, x̄) to C at x̄ is described as

T (C, x̄ = {d ∈ R
n : 〈Q1x̄ + b1, d〉 � 0 and 〈Q2x̄ + b2, d〉 � 0},
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and the first-order necessary condition for maximality of x̄ reads as follows:

〈Ax̄ + a, d〉 � 0 for all d ∈ T (C, x̄). (16)

We get rid of the ε > 0 in (15) as we have done in the previous subsection in the
situation where only one inequality constraint was present. We skip details of cal-
culation and directly give a necessary and sufficient condition for global optimality
in a form parallel to (14).

THEOREM 4. Under the assumptions posed at the beginning of the subsection, x̄
satisfying g1(x̄) = g2(x̄) = 0 is a global maximizer in (P2) if and only if


〈Ad, d〉〈Q1 x̄ + b1, d〉〈Q2x̄ + b2, d〉
−〈Ax̄ + a, d〉 min{〈Q1d, d〉〈Q2x̄ + b2, d〉, 〈Q2d, d〉〈Q1x̄ + b1, d〉} � 0

for all d ∈ T (C, x̄).

(17)

We know that, reformulated with the help of Lagrange -KKT multipliers µ̄i , con-
dition (16) is equivalent to the following: there exist µ̄1 � 0 and µ̄2 � 0 such
that:

Ax̄ + a = µ̄1(Q1x̄ + b1)+ µ̄2(Q2x̄ + b2). (18)

Now, since the interior of T (C, x̄) consists of those d ∈ R
n for which both 〈Q1x̄+

b1, d〉 and 〈Q2x̄ + b2, d〉 are <0, a necessary and sufficient condition for global
optimality written with the multipliers µ̄1, µ̄2, and parallel to (10) (or (11)) is as
follows.

THEOREM 5. Under the assumptions posed at the beginning of the subsection,
x̄ satisfying g1(x̄) = g2(x̄) = 0 is a global maximizer in (P2) if and only if there
exist µ̄1 � 0 and µ̄2 � 0 satisfying:

Ax̄ + a = µ̄1(Q1x̄ + b1)+ µ̄2(Q2x̄ + b2); (19)

〈Ad, d〉 − µ̄1 max

{
〈Q1d, d〉, 〈Q1x̄ + b1, d〉

〈Q2x̄ + b2, d〉 〈Q2d, d〉
}

−µ̄2 max

{
〈Q2d, d〉, 〈Q2x̄ + b2, d〉

〈Q1x̄ + b1, d〉〈Q1d, d〉
}

� 0 (20)

for all d ∈ intT (C, x̄).

Condition (20) looks like a second order condition for maximality, actually mix-
ing first and second (differential) information on the data f , g1 and g2 at x̄. Let
K := intT (C, x̄) and let H2(x̄, µ̄1, µ̄2; .) denote the homogeneous (of degre two)
function occurring in (20). We indeed have:

H2(x̄, µ̄1, µ̄2, d) � 0 for all d ∈ K ∪ (−K), (21)
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but, contrary to the case where only one inequality constraint was present (Theor-
ems 2 and 3), the closure of K ∪ (−K) is not the whole R

n, whence (17) or (21)
cannot be expanded to all directions d in R

n.
H2(x̄, µ̄1, µ̄2, .) can be compared to the quadratic form associated with the

Hessian matrix of the (usual) Lagrangean function:

x �→ L(x, µ̄1, µ̄2) := f (x)− µ̄1g1(x)− µ̄2g2(x)

at x̄. Indeed

H2(x̄, µ̄1, µ̄2, d) � 〈Ad, d〉 − µ̄1〈Q1d, d〉 − µ̄2〈Q2d, d〉 (22)

= 〈∇2
xxL(x̄, µ̄1, µ̄2)d, d〉 for all d ∈ R

n. (23)

One thus recovers from Theorem 5 the following well-known sufficient condition
for global maximality: if, for x̄ satisfying g1(x̄) = g2(x̄) = 0, there exist µ̄1 � 0
and µ̄2 � 0 such that (18) holds true and A−µ̄1Q1−µ̄2Q2 is negative semidefinite,
then x̄ is a global maximizer of (P2).

Note also that a (sharpened) necessary condition for global maximality was
obtained in [7, p. 589]: under the assumptions of our problem, it states that if x̄ is a
global maximizer of (P2), then there exist µ̄1 � 0 and µ̄2 � 0 such that (18) holds
true and A− µ̄1Q1 − µ̄2Q2 has at most one strictly positive eigenvalue. Deriving
the latter property from (20) is not straightforward.

2.2.2. Case where g1(x̄) = 0 and g2(x̄) < 0

Here again the tangent cone T (C, x̄) to C at x̄ is the half-space

T (C, x̄) = {d ∈ R
n : 〈Q1x̄ + b1, d〉 � 0}.

Even if only the first constraint function g1 is active at x̄, the second one g2 neces-
sarily plays a role, since we are considering a global optimality condition at x̄. To
calculate (IC)′ε(x̄, d) for d �= 0, we need to determine

td := sup{t > 0 : gi(x̄ + td) � 0 for i = 1, 2}
= sup

{
t > 0 : 1

2
t2〈Q1d, d〉 + t〈Q1x̄ + b1, d〉 � 0 and

1

2
t2〈Q2d, d〉 + t〈Q2x̄ + b2, d〉 + g2(x̄) � 0

}
.

The first inequality in the definition of td is treated as in Section 2.2.1. It gives rise
to

t
(1)
d =

{
+∞ if 〈Q1x̄ + b1, d〉 � 0,

−2 〈Q1x̄+b1,d〉
〈Q1d,d〉 if 〈Q1x̄ + b1, d〉 < 0.

(24)
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Handling the second inequality in the definition of td leads us to

t
(2)
d = −2

R2(x̄, d)

〈Q2d, d〉 ,
where

2R2(x̄, d) := 〈Q2x̄ + b2, d〉 − [(〈Q2x̄ + b2, d〉)2 − 2〈Q2d, d〉g2(x̄)]1/2.

(R2(x̄, d) is a sort of ‘residual term’ due to the fact that g2 is not active at x̄;
R2(x̄, d) < 0 for d �= 0). Hence,

td = min(t(1)d , t
(2)
d ) (25)

=
{+∞ if 〈Q1x̄ + b1, d〉 � 0,

min
{
−2 〈Q1x̄+b1,d〉

〈Q1d,d〉 ,−2 R2(x̄,d)

〈Q2d,d〉
}

if 〈Q1x̄ + b1, d〉 < 0.
(26)

Consequently the necessary and sufficient condition for global optimality (6) is
reformulated as:{

〈Ax̄ + a, d〉 + √
2ε〈Ad, d〉 + ε

2 min
{

〈Q1d,d〉
〈Q1x̄+b1,d〉,

〈Q2d,d〉
R2(x̄,d)

}
� 0

for all d satisfying 〈Q1x̄ + b1, d〉 < 0 and all ε > 0.
(27)

We get rid of the ε > 0 in (27) as in the previous subsections. This leads us to the
following analog of Theorem 4.

THEOREM 6. Under the assumptions posed at the beginning of the subsection, x̄
satisfying g1(x̄) = 0 and g2(x̄) < 0 is a global maximizer in (P2) if and only if


〈Ad, d〉〈Q1 x̄ + b1, d〉R2(x̄, d)

−〈Ax̄ + a, d〉 min{〈Q1d, d〉R2(x̄, d), 〈Q2d, d〉〈Q1x̄ + b1, d〉} � 0

for all d ∈ T (C, x̄).

(28)

Note that the expression above is no longer symmetric in d (since R2(x̄,−d) �=
−R2(x̄, d)).

Reformulated with the help of the Lagrange -KKT multiplier µ̄1 associated with
the constraint function g1 active at x̄, we get from Theorem 6 the following analog
of Theorem 5.

THEOREM 7. Under the same assumptions as before, x̄ satisfying g1(x̄) = 0
and g2(x̄) < 0 is a global maximizer in (P2) if and only if there exists µ̄1 � 0
satisfying:

Ax̄ + a = µ̄1(Q1x̄ + b1); (29)

〈Ad, d〉 − µ̄1 max

{
〈Q1d, d〉, 〈Q1x̄ + b1, d〉

R2(x̄, d)
〈Q2d, d〉

}
� 0

for all d ∈ intT (C, x̄). (30)
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2.3. A GLOBAL OPTIMALITY CONDITION IN THE PRESENCE OF m

INEQUALITY CONSTRAINTS

The general problem to be considered is:

(Pm)

{
maximize f (x) := 1

2〈Ax, x〉 + 〈a, x〉 + α

subject to x ∈ C := {x ∈ R
n : g1(x) � 0, . . . , gm(x) � 0},

where gi(x) := 1
2 〈Qix, x〉 + 〈bi, x〉 + ci for i = 1, 2, . . . , m.

We assume the following on the data:
• A �= 0 is positive semidefinite;
• Q1,Q2, . . . ,Qm are positive definite;
• There exists x0 such that gi(x0) < 0 for all i (Slater’s condition).

For x̄ ∈ C, let I (x̄) := {i : gi(x̄) = 0}. We have that

T (C, x̄) = {d ∈ R
n : 〈Qix̄ + bi, d〉 � 0 for all i ∈ I (x̄)},

intT (C, x̄) = {d ∈ R
n : 〈Qix̄ + bi, d〉 < 0 for all i ∈ I (x̄)}.

For i �∈ I (x̄), we note Ri(x̄, d) the associated residual term, that is defined as:

2Ri (x̄, d) := 〈Qix̄ + bi, d〉 − [(〈Qix̄ + bi, d〉)2 − 2〈Qid, d〉gi(x̄)]1/2.

The method we now follow is the one developed in full detail when m = 2 in
Section 2.2. We skip over calculations and present the final statement.

THEOREM 8. Under the assumptions posed in this subsection, x̄ ∈ C is a global
maximizer in (Pm) if and only if there exist µ̄j � 0, j ∈ I (x̄), such that:

Ax̄ + a =
∑
j∈I (x̄)

µ̄j (Qj x̄ + bj );

〈Ad, d〉 −
∑
j∈I

µ̄j (x̄)min

{
〈Qjd, d〉, 〈Qjx̄ + bj , d〉

〈Qix̄ + bi, d〉 , i ∈ I (x̄), i �= j ;

〈Qjx̄ + bj , d〉
Ri(x̄, d)

〈Qid, d〉, i �∈ I (x̄

}
� 0

for all d ∈ intT (C, x̄).

3. Conclusion

For our nonconvex quadratic optimization problems, global optimality conditions
consist in combinations of two conditions:

• the classical first order condition for optimality;
• a complementary condition stating that some homogeneous (of degree two)

function, mixing first and second order (differential) information about the
data, should have a constant sign on a convex cone.
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We agree that it is hard to assess the practical use of these global optimality condi-
tions. The situation was the same some years ago for optimizing a convex quadratic
function over a convex polyhedral set; several algorithms have now been designed
to use these global optimality conditions. We expect the conditions presented here
to provide material for future work in the same direction.
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